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Tumor target contouring for precision head and neck ra-
diation therapy is labor intensive and highly variable 

among radiation oncologists (1). Importantly, contouring 
inaccuracies compromise survival in patients with head and 
neck cancer (2). Moreover, with the progressive implemen-
tation of intensity modulated radiation therapy and proton 
beam therapy, contouring time of the primary gross tumor 
volume (GTV) has substantially increased due to the need to 

consider multimodal or multiparametric imaging data sets. 
In tumor contouring, the manual process entails a thorough 
review of the tumor on diagnostic images and delineation of 
the GTV on the treatment-planning CT or MRI data set.

When compared with other head and neck cancers, 
nasopharyngeal carcinoma (NPC) is clinically distinct and 
exquisitely sensitive to radiation therapy; hence, the major-
ity of these tumors are cured with radiation therapy (3). At 
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Background: Nasopharyngeal carcinoma (NPC) may be cured with radiation therapy. Tumor proximity to critical structures de-
mands accuracy in tumor delineation to avoid toxicities from radiation therapy; however, tumor target contouring for head and 
neck radiation therapy is labor intensive and highly variable among radiation oncologists.

Purpose: To construct and validate an artificial intelligence (AI) contouring tool to automate primary gross tumor volume (GTV) 
contouring in patients with NPC.

Materials and Methods: In this retrospective study, MRI data sets covering the nasopharynx from 1021 patients (median age, 47 years; 
751 male, 270 female) with NPC between September 2016 and September 2017 were collected and divided into training, validation, 
and testing cohorts of 715, 103, and 203 patients, respectively. GTV contours were delineated for 1021 patients and were defined by 
consensus of two experts. A three-dimensional convolutional neural network was applied to 818 training and validation MRI data sets 
to construct the AI tool, which was tested in 203 independent MRI data sets. Next, the AI tool was compared against eight qualified 
radiation oncologists in a multicenter evaluation by using a random sample of 20 test MRI examinations. The Wilcoxon matched-pairs 
signed rank test was used to compare the difference of Dice similarity coefficient (DSC) of pre- versus post-AI assistance.

Results: The AI-generated contours demonstrated a high level of accuracy when compared with ground truth contours at testing in 
203 patients (DSC, 0.79; 2.0-mm difference in average surface distance). In multicenter evaluation, AI assistance improved  
contouring accuracy (five of eight oncologists had a higher median DSC after AI assistance; average median DSC, 0.74 vs 0.78;  
P , .001), reduced intra- and interobserver variation (by 36.4% and 54.5%, respectively), and reduced contouring time (by 39.4%).

Conclusion: The AI contouring tool improved primary gross tumor contouring accuracy of nasopharyngeal carcinoma, which could 
have a positive impact on tumor control and patient survival.
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(approval no. YB-2017–038); the requirement to obtain in-
formed consent was waived. The authenticity of this article has 
been validated by uploading the key raw data onto the Re-
search Data Deposit public platform (www.researchdata.org.cn) 
(RDD no. RDDA2018000927).

MRI Examinations
We retrospectively collected MRI studies of the nasopharynx 
from patients with histologically proven and radiation therapy–
naive NPC between September 1, 2016, and September 30, 
2017, from a single institute (Sun Yat-sen University Cancer 
Center). MRI examinations were performed with unenhanced 
T1- and T2-weighted, contrast-enhanced T1-weighted, and 
fat-suppressed T1-weighted sequences. Details of MRI acquisi-
tion are included in Appendix E1 (online). The exclusion crite-
ria are shown in the study flow diagram (Fig 1). The final data 
set comprised 1021 patients (median age, 47 years; 751 male, 
270 female), who were then randomly assigned to three cohorts:  
(a) a training cohort of 715 patients for 3D CNN construction, 
(b) a validation cohort of 103 patients for optimization of the 
3D CNN hyperparameters, and (c) a testing cohort of 203 pa-
tients to test the performance of the AI contouring tool.

Human Expert Delineated GTV Contours
MRI examinations of the 1021 patients were assigned to two 
expert radiation oncologists (Y.S., L.L.T.; more than 15 years 
of experience in caring for patients with NPC) to delineate 
ground truth GTV via consensus. These examinations were 
used to train and test the AI contouring tool. A third radiolo-
gist specializing in head and neck imaging (C.M.X., 25 years of 
experience) was consulted in cases of disagreement. Details are 
described in Appendix E1 (online). Figure E1 (online) shows 
an example of the ground truth contour.

Network Architecture
We implemented 3D CNN to extract representative features 
for the complicated GTV based on four MRI pulse sequences. 
Specifically, we designed a full CNN architecture, which was 
composed of encoder and decoder paths, to conduct the seg-
mentation task. Our network is based on the 3D CNN archi-
tecture of VoxResNet (6). The detailed network architecture is 
shown in Figure 2, and we have deposited all computer codes 
used for modeling and data analysis in GitHub (https://github.
com/AutoContour/NPC). Detailed descriptions and the training 
and inference settings of the proposed 3D CNN are presented 
in Appendix E1 (online).

Performance of the AI Contouring Tool
Performance of the AI contouring tool was evaluated in the 
testing cohort (n = 203) using Dice similarity coefficient 
(DSC) and average surface distance (ASD). The DSC mea-
sures the spatial overlap between the AI-generated contour 
(A) and the ground truth contour (G), which is defined as: 
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 (7). The ASD counts the average dis-

tance between the surfaces of two contours (8).

Abbreviations
AI = artificial intelligence, ASD = average surface distance, CNN = con-
volutional neural network, DSC = Dice similarity coefficient, GTV = 
gross tumor volume, IC = induction chemotherapy, NPC = nasopha-
ryngeal carcinoma, 3D = three-dimensional

Summary
An artificial intelligence contouring tool improved tumor target con-
touring accuracy for nasopharyngeal carcinoma, which could have a 
positive impact on tumor control and patient survival.

Key Points
 n In this multicenter evaluation, artificial intelligence assistance sub-

stantially improved contouring accuracy for five of eight radiation 
oncologists.

 n An artificial intelligence contouring tool reduced intraobserver 
variation by 36.4%, reduced interobserver variation by 54.5%, 
and reduced contouring time by 39.4%.

present, intensity modulated radiation therapy is the standard 
radiation therapy technique for NPC (4). GTV contouring for 
NPC is labor intensive and error prone, particularly due to the 
following factors: (a) NPC can infiltrate the adjacent skull base 
and neural structures, but the extent of involvement is often re-
flected by subtle signal changes at MRI. (b) The proximity to criti-
cal neural and other organs demands accuracy in the delineation 
of GTV to avoid unnecessary toxicities from radiation therapy. As 
such, the radiation therapy planning workflow for NPC builds on 
the experience of the radiation oncologist. Automation of GTV 
contouring by deep learning, if available, could be advantageous 
in this context.

Nonetheless, automation of tumor contouring for NPC by 
deep learning is challenging due to the substantial interpatient 
heterogeneity in tumor shape and the poorly defined tumor-
to–normal tissue interface. More recently, deep convolutional 
neural networks (CNNs) have emerged as promising alternatives 
for volumetric medical image segmentation. Success has been 
achieved by performing liver, heart, and brain segmentation 
from three-dimensional (3D) images using 3D CNN, and this 
technique has yielded comparable performance to that of state-
of-the-art methods (5,6).

In this study, we investigated the use of deep learning for 
GTV contouring of NPC. We first constructed an artificial in-
telligence (AI) contouring tool by applying a 3D CNN model 
to MRI examinations from a training cohort of 818 patients and 
subsequently validated its accuracy in a separate testing cohort 
of 203 patients. Next, the AI tool was compared against eight 
qualified radiation oncologists in a multicenter evaluation using 
20 randomly sampled patients from the testing cohort.

Materials and Methods
One of the authors (H.C.) is an employee of a technology com-
pany (Imsight Medical Technology, Shenzhen, China), but we 
did not receive any financial support, equipment, or contrast 
agents from his company or any other industry entities. The 
authors had control of the data and information submitted for 
publication. This retrospective study was approved by the Sun 
Yat-sen University Cancer Center institutional review board 
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revisions required for more than 40% to 60% of 
the volumetric contours, revisions required for 
more than 60% to 80% of the volumetric con-
tours, and revisions required for more than 80% 
to 100% of the volumetric contours. Next, we ex-
plored the correlation between DSC and different 
magnitudes of volumetric revision and compared 
the differences in degrees of volumetric revision in 
T1– T2 versus T3–T4 tumors, as well as preche-
motherapy versus post-IC tumors.

Multicenter Evaluation of the AI 
Contouring Tool
To further evaluate the AI contouring tool, we 
conducted a multicenter study involving eight 
qualified radiation oncologists (L.L., Y.Q.T., 
W.L.C., B.A.S., F.L., C.J.T., N.J., and J.Y.L.) 
from seven high-volume (200 NPC cases per 
year) academic institutions. The radiation on-
cologists’ experience with NPC was ranked ac-
cording to their total number of contoured NPC 
targets since January 1, 2013 (Table E1 [online]). 
First, MRI examinations of 20 randomly sam-
pled patients from the testing cohort, stratified 
by T category (T1–T2, T3–T4), were distributed 

to the eight radiation oncologists for manual contouring. 
Next, the AI-generated contours were distributed to them for 
editing after a minimum interval of 2 months. The radiation 
oncologists were blinded to the ground truth contours, their 
first set of manual contours, and those by their counterparts. 
Contouring accuracy was assessed with DSC and ASD. In-
traobserver variation was assessed with the interquartile devi-
ation of DSC; interobserver variation was assessed with mul-
tiobserver DSC and volume coefficient of variation (the ratio 
between standard deviation and mean GTV). Times taken 
for manual, automated AI-only, and AI-assisted contouring 
were also reported.

Statistical Analysis
Categorical variables for the combined training-validation and 
testing cohorts were compared by using the x2 test or Fisher 
exact test; numeric variables were compared by using the 
Mann-Whitney U test. The Mann-Whitney U test was used 
to compare DSC and ASD between different subgroups. The 
Wilcoxon matched-pairs signed rank test was used to compare 
DSC, ASD, interquartile deviation of DSC, volume coefficient 
of variation, and time taken of AI tool versus manual, pre- 
versus post-AI assistance, and 3D CNN versus the 3D U-Net 
method. Kruskal-Wallis one-way analysis of variance was used 
to compare the median DSC among the magnitudes of volu-
metric revision. Correlation between the median DSCs and 
degrees of volumetric revision was assessed with the Spearman 
correlation coefficient. The x2 test was used to compare the dif-
ference in degrees of volumetric revision between subgroups. 
All analyses were performed by using Statistical Product and 
Service Solutions (IBM SPSS, version 21.0; New York, NY). 
Statistical significance was set at two-tailed P , .05.

Additionally, we explored the comparison of both indexes 
between the following subgroups: chemotherapy-naive versus 
post–induction chemotherapy (hereafter, post-IC) tumors and 
early T category (T1 and T2) versus advanced T category (T3 
and T4) tumors. Besides volume-based indexes, section-based 
indexes of four labeled transverse sections—namely midcavern-
ous sinus, skull base at the level of clivus, Eustachian cushion, 
and miduvula—were also evaluated to determine the perfor-
mance of our AI contouring tool at different anatomic locations 
within the tumor.

Finally, we compared the performance of GTV contours 
generated from our proposed 3D CNN against a 3D U-Net 
(9); the latter is the commonly used network architecture 
for medical image segmentation. When training the 3D 
U-Net, we retained a consistent image preprocessing, nor-
malization, augmentation, and training strategy to ensure a 
neutral comparison.

Assessment of AI-generated Contours by Human 
Experts
Given that evaluation indexes do not provide insight into how 
much the contours would need to be edited to be used in clini-
cal practice, we then asked the experts to further evaluate the 
applicability of AI-generated contours. Specifically, the AI-
generated contours of 203 patients were assigned to the hu-
man experts (Y.S., L.L.T.) to grade their accuracy by consensus 
using volumetric revision magnitudes, defined as the volume 
needed to be edited divided by the volume of the AI-generated 
contour, with the result multiplied by 100. Accuracy was clas-
sified as follows: no revision required, revisions required for 
more than 0% to 20% of the volumetric contours, revisions re-
quired for more than 20% to 40% of the volumetric contours, 

Figure 1: Study flow diagram. AI = artificial intelligence, CNN = convolutional 
neural network, NPC = nasopharyngeal carcinoma, RT = radiation therapy, 3D = 
three dimensional.
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or imaging and tumor characteristics were observed between the 
combined training and validation cohort and the testing cohort 
(Table 1). Additionally, our data set comprised an adequate number 
of tumors that invaded the distinct anatomic regions (Table E2 
[online]). Characteristics of the 20 randomly sampled patients used 
in multicenter evaluation are presented in Table E3 (online).

Results

Patient Characteristics
The flow diagram of this study is shown in Figure 1. A total of 4084 
MRI examinations performed in 1021 patients were included. No 
significant differences in sex, age, T category, tumor histology, 

Table 1: Clinical, imaging, and Tumor Characteristics

Characteristic Entire Cohort (n = 1021)
Training-Validation  
Cohort (n = 818) Testing Cohort (n = 203) P Value

Sex … … … .81
 Male 751 (73.6) 603 (73.7) 148 (72.9) …
 Female 270 (26.4) 215 (26.3) 55 (27.1) …
Age … … … .35
 Median 47 46 48 …
 ,18 y 3 (0.3) 2 (0.2) 1 (0.5) …
 18260 y 872 (85.4) 706 (86.3) 166 (81.8) …
 60 y 146 (14.3) 110 (13.5) 36 (17.7) …
T category … … … .24
 T1 50 (4.9) 45 (5.5) 5 (2.5) …
 T2 123 (12.0) 94 (11.5) 29 (14.3) …
 T3 601 (58.9) 483 (59.0) 118 (58.1) …
 T4 247 (24.2) 196 (24.0) 51 (25.1) …
Histologic finding … … … .26
 WHO type I 2 (0.2) 1 (0.1) 1 (0.5) …
 WHO type II or III 1019 (99.8) 817 (99.9) 202 (99.5) …
Imaging characteristics … … … …
 MRI time point … … … .36
  Chemotherapy naive 692 (67.8) 549 (67.1) 143 (70.4) …
  Post-IC 329 (32.2) 269 (32.9) 60 (29.6) …
 Tumor characteristic … … …
  No. of tumor-bearing sections per case 17 (4–41) 17 (4–41) 18 (6–36) .16
  Primary GTV (mL) 34.0 (2.1–268.6) 33.6 (2.1–268.6) 35.8 (4.4–240.5) .50

Note.—Data are either number of patients, with the percentage in parentheses, or median, with the range in parentheses. We calculated P 
values by using the x2 or Fisher exact test for category variables and the Mann-Whitney U test for numeric variables. Two-tailed P , .05 in-
dicated a significant difference. Patients were staged according to the 8th edition of American Joint Committee on Cancer staging manual. 
GTV = gross tumor volume, IC = induction chemotherapy, WHO = World Health Organization.

Figure 2: Network architecture of the proposed three-dimensional (3D) convolutional neural network (CNN). The network has 28 layers integrat-
ing six residual blocks. Yellow arrows indicate up-sampling operations to make dense predictions for the segmentation task. Skip connections are 
used to fuse low- and high-level features in the network. The batch normalization is a linear transformation of the features to reduce covariance 
shift, thus speeding up the training procedure. Convolution bars indicate the convolution operation, which computes the features. The number 64 
indicates the number of channels in that layer, and 3 3 3 3 3 denotes the size of the 3D CNN kernels.



Lin et al

Radiology: Volume 291: Number 3—June 2019  n  radiology.rsna.org 681

(n = 2), temporal lobe (n = 2), petrous apex (n = 1), and pituitary 
fossa (n = 1) than at the lateral retropharynx (n = 2) or anterior 
pterygopalatine fossa (n = 1).

Finally, when we compared the accuracy of GTV contours 
generated from our 3D CNN and from 3D U-Net, median 
DSC and ASD of the 3D U-Net–generated contours were infe-
rior to those generated with our 3D CNN model (median DSC, 
0.72 vs 0.79; median ASD, 2.3 vs 2.0 mm; P , .001 for both; 
Table E5 [online]).

Assessment of AI-generated Contours by Human 
Experts
When using our grading criteria for contour accuracy, the ma-
jority (180 of 203 [88.7%]) of the AI-generated contours were 
deemed satisfactory by the experts (no revision required, n = 
66; .0%–20% revision, n = 114). Only three contours were 
assessed to require .40%–60% revision, with none requiring 
.60% revision, thus validating the robustness of our AI con-
touring tool. Additionally, median DSC was correlated to the 
magnitudes of revision required (R = 0.23, P , .001) (Fig 4, A), 
indicating the reliability of using DSC as a contouring accu-
racy evaluation criterion.

Similarly, we also observed a higher degree of required volu-
metric revision in the T3–T4 tumors than in the T1–T2 tumors 
(13.0% vs 2.9% required .20% revision, P = .004) and in the 
post-IC subgroup than in the chemotherapy-naive subgroup 
(20.0% vs 7.7% required .20% revision, P = .008) (Fig 4, B). 
The former is consistent with the larger ASD that was observed 
for T3–T4 tumors (Table 2).

Multicenter Evaluation of AI Contouring Tool
To further validate our findings, we tested the AI tool against 
eight qualified radiation oncologists. We used the GTV con-
tours by human experts as ground truth, and our AI tool per-
formed comparably to the assigned radiation oncologists (Fig 
5, A and B, Table E6 [online]). For DSC, the AI tool out-
performed four of eight radiation oncologists (median DSC: 
0.79 vs 0.71, 0.71, 0.72, and 0.74; P , .05 for all) and was 
noninferior to the other four (median DSC: 0.80, 0.79, 0.78, 

Performance of the AI Contouring Tool
Accuracy of the AI-generated contours is summarized in Table 2 
(see also Fig E2 [online] for distribution histograms of the in-
dexes). Figure 3 shows the level of concordance for the GTV 
contours between the AI tool and human experts. We observed 
a median DSC of 0.79 (interquartile range, 0.76–0.81; 95% 
confidence interval: 0.78, 0.79) and a median ASD of 2.0 mm 
(interquartile range, 1.6–2.4 mm; 95% confidence interval: 
1.9, 2.1 mm); the latter is less than the commonly accepted 
3-mm margin of systematic and random error for radiation 
therapy for head and neck cancers (10). These results indicate 
a strong concordance between our AI tool and human experts 
for GTV contouring.

In the subgroup analyses, the AI tool achieved comparable 
DSC and ASD between the post-IC and chemotherapy-naive 
subgroups (median DSC, 0.79 vs 0.79; P = .65; median ASD, 
2.1 vs 1.9 mm; P = .13; Table 1). For the different T categories, 
the AI tool achieved a significantly smaller ASD in the early 
T category tumors than in the advanced T category tumors 
(median ASD, 1.5 vs 2.0 mm; P , .001; Table 1), which could 
imply better accuracy of GTV contouring by the AI tool for 
smaller tumors. Nonetheless, we did not observe a difference 
for DSC between the different T categories. Additionally, other 
confounders, including age, sex, image resolution, and body 
mass index showed no impact on contouring accuracy (Ap-
pendix E1, Fig E3 [online]).

For section-based analysis, we observed a difference in accu-
racy of our AI tool at the different anatomic regions (Table E4 
[online]); median section-based DSC was higher at the midvol-
ume sections of the skull base (0.82) and the Eustachian cushion 
(0.83) than at the cranial-caudal sections of the cavernous sinus 
(0.75) and uvula (0.75), respectively. This may imply a differ-
ence in contouring accuracy within subsets of T4 tumors; for 
example, accuracy may be compromised for tumors that infil-
trate superiorly into the cavernous sinus and inferiorly to the 
oropharynx and hypopharynx versus those that infiltrate laterally 
into the masticator space. To confirm this finding, we reviewed 
the AI-generated contours and observed a higher number of 
contouring “misses” at the oropharynx (n = 4), hypopharynx 

Table 2: Accuracy of AI-generated Contours in the Testing Cohort

Volume-based Indexes Total (n = 203)

Chemotherapy Condition  
at MRI

P Value

T Category

P Value
Chemotherapy 
Naive (n = 143)

Post-IC  
(n = 60)

T1 and T2 
(n = 34)

T3 and T4 
(n = 169)

DSC … … … .65 … … .53
 Median 0.79 0.79 0.79 … 0.78 0.79 …
 Interquartile range 0.76–0.81 0.76–0.81 0.75–0.81 … 0.76–0.80 0.76–0.81 …
 95% CI for the median 0.78, 0.79 0.78, 0.79 0.78, 0.80 … 0.78, 0.79 0.78, 0.79 …
ASD (mm) … … … .13 … … ,.001
 Median 2.0 1.9 2.1 … 1.5 2.0 …
 Interquartile range 1.6–2.4 1.5–2.4 1.7–2.5 … 1.3–2.0 1.7–2.5 …
 95% CI for the median 1.9, 2.1 1.8, 2.0 1.9, 2.2 … 1.3, 1.8 1.9, 2.1 …

Note.—We calculated the P value by using Mann-Whitney U test. Two-tailed P , .05 indicates a significant difference. AI = artificial intel-
ligence, ASD = average surface distance, DSC = Dice similarity coefficient, CI = confidence interval, IC = induction chemotherapy.
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and 0.78). For ASD, our AI 
tool outperformed two radia-
tion oncologists, with median 
ASD of 2.2 mm versus 3.3 and 
2.8 mm, respectively (both P 
, .05) and performed compa-
rably to five radiation oncolo-
gists, except for one oncologist 
who achieved an ASD that 
was smaller than that achieved 
with the AI tool (R1, 1.6 mm; 
P = .02). Overall, our AI tool 
achieved smaller interquartile 
deviation for DSC (0.08 vs 
0.08–0.14) and ASD (0.6 mm 
vs 0.7–2.1 mm) compared with 
the manual contours of the on-
cologists (Fig 5, A and B; Table 
E6 [online]), enabling us to 
confirm its robustness for de-
lineating GTV in NPC.

Next, we determined if the 
manual contours could be en-
hanced by our AI tool. We 
observed that AI assistance re-
sulted in higher DSC values in 
five of eight radiation oncolo-
gists (Fig 5, C; Table E7 [on-
line]) (P , .05 for each com-
parison; average median DSC, 
0.74 vs 0.79; P , .001). This 
would correspond to an over-
all reduction in percentage of 
volumetric contours requiring 
revision (Fig E4 [online]). AI 
assistance also led to a reduction 
in intraobserver variation, with 
smaller interquartile deviation 
of DSC in seven of eight ra-
diation oncologists after AI as-
sistance (median interquartile 
deviation, 0.07 [interquartile 
range, 0.05–0.08] vs 0.11 [in-
terquartile range, 0.09–0.14]; P 
= .02; Table E7 [online]; over-
all reduction, 36.4%). Figure 
6 shows the level of variation 
in the manual and post-AI–as-
sisted contours by the eight ra-
diation oncologists.

Consistent with the increased 
accuracy, interobserver variation 
among the eight radiation oncol-
ogists was also reduced (Fig 6);  
median multiobserver DSC of 
post-AI-assisted contours was 
higher than that of manual 

Figure 3: Example contrast-enhanced T1-weighted MRIs show the level of concordance for primary 
gross tumor volume contours between the artificial intelligence (AI) tool and human experts through supe-
rior, median, and inferior sections within the tumor. MRIs were obtained in patients with Dice similarity 
coefficients of, A, 0.67, B, 0.77, C, 0.82, and, D, 0.86. Light blue lines denote the human experts delin-
eated ground truth, and red lines denote the AI-generated contours.
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Techniques like intensity modulated radiation therapy and 
proton beam therapy have led to better tumor control and reduced 
late-onset radiation-induced complications in patients with mul-
tiple types of tumors (11–14). However, the clinical advantages 
of these contemporary radiation therapy techniques are intricately 
linked to contouring accuracy, dose conformity, and precision 
of plan delivery (15). These processes are time consuming, and 
interobserver heterogeneity in the delineation of head and neck 
cancers is common (1). However, contouring accuracy is clinically 
important, as suboptimal tumor coverage and poor-quality radia-
tion therapy plans are major factors for disease relapse and inferior 
survival (2). In this context, our AI tool simultaneously improved 
tumor delineation and reduced contouring variation, while it also 
reduced the time required for contouring.

In this study, we used a 3D CNN to automate GTV contour-
ing on multiparametric MRIs, while a recently proposed deep 
deconvolutional neural network could only perform tumor seg-
mentation for T1–T2 NPC tumors on two-dimensional axial 
CT images (16). Despite good accuracy (mean DSC, 0.80), they 
have not trained the deep deconvolutional neural network model 
in patients with T3–T4 disease, probably because of the lack of 
sensitivity to detect skull base and intracranial infiltration with 
CT (17,18). Although CT is the most commonly used imaging 
modality in treatment planning, MRI has been established as the 
standard modality for use in NPC staging and target contour-
ing because of its superior soft-tissue contrast (19,20). Hence, 
in clinical practice, GTV contours are often generated on MRIs 
then registered to the treatment planning CT image (20–24). 

contours (0.80 vs 0.70, P , .001, Table E8 [online]), correspond-
ing to a 54.5% reduction in volume coefficient of variation (0.15 
vs 0.33, P , .001, Table E8 [online]). We observed time savings 
with AI intervention; median runtime of AI-only contouring was 
40 seconds (range, 30–45 seconds), and average time spent editing 
an AI-generated contour compared with time spent with manual 
contouring was 18.3 vs 30.2 minutes (P , .001), corresponding 
to a time savings of 39.4% of work-hours.

Discussion
In this study, we constructed an artificial intelligence (AI) con-
touring tool using a large set of MRI examinations from 818 
patients with nasopharyngeal carcinoma (NPC) and demon-
strated the competency of our AI tool to delineate primary gross 
tumor volume (GTV) in the nasopharynx when compared 
against qualified radiation oncologists. Our AI tool was able to 
achieve contours comparable to those of human experts in 203 
patients (median Dice similarity coefficient [DSC], 0.79; aver-
age surface distance [ASD], 2.0 mm). In addition, our AI tool 
performed favorably when compared against eight other expe-
rienced radiation oncologists in a separate multicenter study, 
outperforming half of them (median DSC, 0.79 vs 0.71, 0.71, 
0.72, and 0.74; P , .05 for all). By allowing the radiation 
oncologists to edit the contours generated initially with our AI 
tool (AI assistance), contouring accuracy was improved in five 
of eight radiation oncologists. With AI assistance, there was 
reduction of intraobserver variation (by 36.4%), reduction of 
interobserver variation by 54.5%, and time savings of 39.4%.

Figure 4: Expert assessment of volumetric revision magnitudes of the artificial intelligence (AI)-generated contours. A, Median Dice similarity co-
efficient (DSC) stratified by different magnitudes of volumetric revision. Kruskal-Wallis one-way analysis of variance was used to compare median 
DSC values among different magnitudes, and Spearman correlation coefficient showed that median DSC and degree of volumetric revision were 
correlated (R = 0.23, P , .001). AI-generated contours were assessed by the two experts who delineated the ground truth contours (Y.S., L.L.T.). 
Magnitude of volumetric revision was defined as the volume needed to be edited divided by the volume of the AI-generated contour, with the result 
multiplied by 100. B, Difference in volumetric revision between early (T1, T2) and advanced (T3, T4) tumors, as well as chemotherapy-naive and 
post–induction chemotherapy (post-IC) tumors assessed by using the x2 test. Two-tailed P , .05 indicates a significant difference. Results indicate 
that by human experts’ assessment, AI performed better in T1 and T2 tumors and chemotherapy-naive tumors when compared with T3 and T4 tu-
mors and post-IC tumors. IQR = interquartile range.
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Several limitations of our study should be noted. First, the 
ground truth contours were derived from only two experienced 
radiation oncologists and were based on imaging modalities 
rather than on correlating the ground truth contours with tu-
mor recurrence risk, given that NPC is a highly radiosensitive 
tumor and has very low local relapse rates (reported 5-year re-
currence rates of 4.4%–11.3%) (26–28) and the majority of 
local recurrence occurred in field (29). Similarly, in this cohort, 
we observed only 33 local relapses in 1021 patients, with a 
median follow-up period of 20.7 months, and most of them 
(32 of 33) were in-field recurrence. The small number of events 
limits the statistical power to conduct such an analysis. Sec-
ond, in the multicenter study, radiation oncologists performed 

However, it would be useful if our deep learning algorithm could 
work just as well with a CT data set.

In addition, one of the potential applications of our AI tool 
is its ability to facilitate the GTV recontouring process in adap-
tive radiation therapy. However, while we are enthusiastic to 
maximize its utility, we must caution the reader that our deep 
learning algorithm was trained on a multiparametric MRI data 
set acquired with a 3.0-T scanner, and we are uncertain whether 
it requires retraining on a CT-based data set; current adaptive 
replanning workflow is based on exploring the ability of an it-
erative artifact reduction algorithm to convert kilovoltage-based 
cone-beam CT images to the quality of planning helical CT im-
ages (25). Hence, much more work is needed in this space.

Figure 5: Results of multicenter evaluation. A, Dice similarity coefficients (DSCs) between manual contours of eight radiation oncologists and 
ground truth contours compared with artificial intelligence (AI)-generated contours and ground truth contours. Dotted lines indicate the median DSC 
of AI-generated contours. Results indicate the competency of the AI tool when compared with qualified radiation oncologists. B, Average surface 
distance (ASD) between manual contours of eight radiation oncologists and ground truth contours compared with AI-generated contours and 
ground truth contours. Dotted lines indicate the median ASD of AI-generated contours. Results indicate the competency of the AI tool when com-
pared with qualified radiation oncologists. C, Comparison of DSC between post-AI–assisted contours and ground truth contours with DSC between 
manual contours and ground truth contours. Results indicate improved contouring accuracy with AI-assistance in GTV contouring for nasopharyn-
geal carcinoma. Error bars denote 10th and 90th percentiles. P values were calculated by using the Wilcoxon matched-pairs signed rank test. 
Two-tailed P , .05 indicates a significant difference.
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